بررسی زمینشیمی آرسنیک در محیطهای آب، خاک و رسوب و ارتباط آن با تجمع زیستی در منطقه بردسیر، کمربند ارومیه–دختر
محورهای موضوعی : پترولوژيراحله هاتفی 1 , فرهاد اسدیان 2 , زهرا بوسلیک 3 , بتول جان جانه 4
1 - پژوهشکده علوم ¬پایه کاربردی، جهاد دانشگاهی
2 - پژوهشکده علوم ¬پایه کاربردی، جهاد دانشگاهی
3 - گروه زمينشناسی محيطی، پژوهشکده علوم پايه کاربردي، جهاد دانشگاهی، تهران، ايران
4 - گروه زمينشناسی محيطی، پژوهشکده علوم پايه کاربردي، جهاد دانشگاهی، تهران، ايران
کلید واژه: آرسنیک, زمینشیمی محیطی, مو بهعنوان شاخص زیستی, بردسیر.,
چکیده مقاله :
پژوهش حاضر با هدف بررسی زمینشیمی آرسنیک در اجزای محیطی (آب، خاک و رسوب) و ارتباط آن با تجمع زیستی در موی انسان در منطقه بردسیر، واقع در کمربند آتشفشانی–پلوتونیکی ارومیه–دختر انجام شد. برای این منظور، در مجموع ۲۴۰ نمونه شامل ۱۰۰ نمونه آب، ۶۸ نمونه خاک، ۲۱ نمونه رسوب و ۱۰۲ نمونه مو برداشت و به روش ICP–MS آنالیز گردید. نتایج نشان داد که میانگین غلظت آرسنیک در آب، خاک و رسوب بهترتیب ۶۶ میکروگرم در لیتر، ۷ و ۵ میلیگرم در کیلوگرم است. در بخشی از آبهای زیرزمینی، غلظت آرسنیک از حد مجاز جهانی (۱۰ میکروگرم در لیتر، WHO) تجاوز کرده و بیانگر آلودگی زمینزاد ناشی از حضور سنگهای دگرسانشده و سولفیددار است. بررسیها نشان داد که در ۶۱ درصد از نمونههای موی انسان، غلظت آرسنیک بالاتر از حد طبیعی (mg/kg ۱) است که گویای مواجهه مزمن جمعیت محلی با آرسنیک میباشد. تحلیل همبستگی و رگرسیون نشان داد که رابطه بین آرسنیک مو و آب (r = 0.48, R² = 0.23) قویتر از خاک (r = 0.25, R² = 0.06) و رسوب (r = 0.14, R² = 0.02) است، که بیانگر نقش غالب آب زیرزمینی در انتقال آرسنیک به بدن انسان است. از نظر زمینشیمیایی، شرایط احیایی آبخوان (اغلب بین 100- تا 200-mV)، pH قلیایی (۹–۱۰)، و وجود گسلهای نفوذپذیر در امتداد شمالغرب–جنوبشرق موجب افزایش تحرک آرسنیک بهصورت As(III) شده است. نتایج این تحقیق تأیید میکند که منشأ اصلی آلودگی آرسنیک در منطقه بردسیر زمینزاد بوده و ارتباط تنگاتنگی میان ویژگیهای زمینشناسی، هیدروژئوشیمیایی و تجمع زیستی این عنصر وجود دارد. این نتایج اهمیت پایش مداوم منابع آب زیرزمینی در نواحی دگرسانشده و آتشفشانی کشور را برجسته میسازد.
This study investigates the geochemical behavior of arsenic in environmental media (water, soil, and sediment) and its bioaccumulation in human hair in the Bardsir region, located within the Urumieh–Dokhtar volcanic–plutonic belt of southeastern Iran. A total of 240 samples—including 100 water, 68 soil, 21 sediment, and 102 human hair samples—were collected and analyzed using ICP–MS. The average arsenic concentrations in water, soil, and sediment were 66 µg/L, 7 mg/kg, and 5 mg/kg, respectively. In parts of the groundwater, arsenic exceeded the WHO guideline value (10 µg/L), indicating geogenic contamination derived from altered and sulfide-bearing volcanic rocks. Approximately 61% of the hair samples contained arsenic at levels above the natural background (1 mg/kg), suggesting chronic exposure of the local population. Correlation and regression analyses revealed a stronger association between arsenic in hair and water (r = 0.48, R² = 0.23) than with soil (r = 0.25, R² = 0.06) or sediment (r = 0.14, R² = 0.02), indicating that groundwater is the primary pathway of arsenic transfer to humans. Geochemically, reducing aquifer conditions (Eh −100 to −200 mV), alkaline pH (9–10), and the presence of permeable NW–SE faults enhance arsenic mobility as As (III). The results indicate that arsenic contamination in the Bardsir area is mainly geogenic, controlled by geological and hydrogeochemical factors, with a clear link to bioaccumulation in humans. This study demonstrates the necessity of continuous groundwater monitoring in altered and volcanic terrains of Iran to mitigate geochemical and public health risks.
احمدي مقدم، پ. و احمدي پور، ح،. .1393 بررسی رخساره شناسی و محيط تشکيل توالیهاي آتشفشانی کوه چهل تن، واقع در جنوب باختر بردسير )استان کرمان(، فصلنامه علوم زمين، 94 ، 103-112.
افتخارنژاد، ج.، 1352. مطلبی چند درباره تشکیل حوضه فیلیش در شرق ایران و توجیه آن با تئوری تکتونیک صفحه ای، ضمیمه گزارش شماره 22ف، سازمان زمین شناسی کشور.
بيات،ا.، فرپور، م.ه. و جعفري، ا.، 1395. خصوصيات فيزيكوشيميايي، ميكرومورفولوژيكي و كانيشناسي رسي خاكهاي منطقه بردسير متأثر از سازندهاي زمينشناسي، ژئومورفولوژي و اقليم. نشريه آب و خاك (علوم و صنايع كشاورزي)، 30، 1515-1530.
پورخسروانی. م.، جمشیدی گوهری، ف.، سیاری، ن.، 1402. ارزیابی تغییرات مکانی عنصر آرسنیک در منابع آب زیرزمینی حوضه سیرجان. مجله سالمت و محیط زیست، وره شانزدهم ، شماره دوم، تابستان ،1402 صفحات 287 تا 302.
رزم ارا، م. و نظری، ا.، 1393. ارزیابی غلظت فلزات سنگین در آبهای آلوده به آرسنیک منطقه کتهتلخ (شمالغرب تربتحیدریه) و امکانسنجی جذب و حذف آرسنیک از منابع آبی توسط سازندهای زمینشناسی منطقه موردمطالعه. پایان نامه کارشناسی ارشد.
زمزم، ع.،رهنما، م.ب.، کوچک علیزاده، س.، 1390. مدلسازی جریان آب زیرزمینی و بررسی ارتباط بین کاهش سطح اب زیرزمینی و خشکسالی ها در دشت بردسیر-کرمان. یازدهمین سمینار سراسری آبیاری و کاهش تبخیر.
سیاره، ع.ر.، فنودی، م.، دادستان، ا.، 1386. بررسی های زمین شناسی زیست محیطی در منطقه قروه-بیجار. گزارش سازمان زمین شناسی کشور.
شاکری، ع.، شریفی، م. و مهرابی، ب.، 1396. ارزیابی ریسک اکولوژیکی و منشاء فلزات سنگین و آرسنیک در رسوبات سطحی رودخانه خیاو در منطقه زمین گرمایی سبلان، شمال غرب ایران. نشریه زمین شناسی کاربردی پیشرفته ، 26.
شفيعی، ب،. .1387 الگوي فلززايی کمربند مس پورفيري کرمان و رهيافتهاي اکتشافی آن، رساله دکتري، دانشگاه شهيد باهنر کرمان، 257 ص.
فاتحی چنار، ح،. احمدي پور، ح. و مراديان شهربابکی، ع،. .1390 ژئوشيمی و جايگاه زمين ساختی تودههاي نفوذي دره زارچوئيه (جنوب شرق بردسير، کرمان)، پترولوژي، 8 ، 69-84
.هاتفی، ر.، اسدیان، ف.، خدایی، ک.، شهسواری، ع.ا.، 1395. پهنه بندی اثرات زیست محیطی آلودگی های زمین زاد در محدوده شهرستان تکاب. طرح پژوهشی جهاد دانشگاهی.
هاتفی، ر.، اسدیان، ف.، خدایی، ک.، شهسواری، ع.ا.، 1397. توسعه روشهای تصمیمگیری در پهنه بندی مخاطرات بهداشتی ناشی از آلودگی های زمین زاد (تاکید بر ارسنیک)– مطالعه موردی بردسیر با استفاده از مدل ارزیابی چند متغیره مکانی (SMCE). طرح پژوهشی جهاد دانشگاهی.
Abbasnejad, A., Mirzaie, A., Derakhshani, R. and Esmaeilzadeh, E., 2013. Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran. Environmental Earth Science, v. 69, p. 2549-2557
Berberian, M., and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences., 18, 210–265
Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.R., López D.L., et al., 2021. Arsenic in Latin America: New findings on source,mobilization and mobility in human environments in20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 51(16), 1727–1865.
Chaudhary, M.M., Hussain, S., Du, C., Conway, B.R., and Ghori, M.U., 2024. Arsenic in Water: Understanding the Chemistry, Health Implications, Quantification and Removal Strategies. Chemical Engineering, 8(4), 78.
Cubadda, F., Jackson, B.P., Cottingham, K.L., Horne, Y.O.V., and Kurzius-Spencer, M., 2017. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of The Total Environment, 579, 1228-1239.
De Temmerman, L., Vanongeval, L., Boon, W., and Hoenig, G., 2003, Heavy metal content of arable soils in northern Belgium. Water, Air and Soil Pollution, 148, 61-73.
Demissie, S., Mekonen, S., Awoke, T., Teshome, B., and Mengistie, B., 2024. Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study. Toxicology Reports, 12, 100–110.
Ganie, S.Y., Javaid, D., Hajam, Y.A., and Reshi, M.S., 2023. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicological Research, 8, 13(1).
Gundert-Remy, U., Damm, G., Foth, H., Freyberger, A., Gebel, T., Golka, K., Röhl, C., Schupp. T., Wollin, K.M., and Hengstler, J.G., 2015. High exposure to inorganic arsenic by food: the need for risk reduction. Archives of Toxicology, . 89(12), 2219-2227.
Katz, S.A., 2019. On the use of hair analysis for assessing arsenic intoxication. International Journal of Environmental Research and Public Health, 16(6), 977.
Li, B., Xu, W., Luo, R., Zhuo, S., Guo, X., Cheng, K., Yun, K., and Ma, D., 2022. Estimation of the Frequency and Time of Human Exposure to Arsenic by Single Hair Analysis. International Journal of Environmental Research and Public Health, 19(18), 11429.
Modabberi, S., 2004, Enviromental geochemistry and trace element anomaly in the Takab area, and their impact on the Zarrineh roud reservoir dam, with special refrence to Zarshuran deposit. Ph.D thesis, Shiraz University-Iran, 200 p.
Naujokas, M., Anderson, B., Ahsan, H., Vasken, A., Graziano, J. WA, S., 2013. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.
Nguyen, T.P.M., Nguyen, T.P.T., Bui, T.H., and Nguyen, T.H., 2018. Concentration of arsenic in groundwater, vegetables, human hair and nails in mining site in the Northern Thai Nguyen province, Vietnam: human exposure and risks assessment[J]. Human and Ecological Risk, Assessment: An International Journal, 25(3), 602-613.
Pekey, H., 2006. Heavy Metal Pollution Assessment in Sediments of the Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123, 219–231.
Ratnaike, R.N., 2003. Acute and chronic arsenic toxicity. Journal of Medicine, 79, 391–396.
Rezaei L, Alipour V, Sharafi P, Ghaffari H, Nematollahi A, Pesarakloo V, et al., 2021. Concentration of cadmium, arsenic, and lead in rice (Oryza sativa) and probabilistic health risk assessment: a case study in Hormozgan province, Iran. Environmental Health Engineering Management, 8(2), 67-75.
Rezazadeh F., Jafari R., Sheikhzadeh F. and Paktinat S., 2014. A study on wool arsenic concentration and some blood parameters in sheep flocks grazing around tailing dams of gold mines in Takab, Iran. Research Opinions in Animal and Veterinary Sciences.
Samanta, G., Sharma, R., and Roychowdhury, T, et al. 2004. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Science of The Total Environment, 326(1–3): 33–47.
Schoolmeester, W.L., and White, D.R., 1980. Arsenic poisoning. Southern Medical Journal, 73(2), 198-208.
Sharifi, R., Moore, F., and Keshavarzi, B., 2016. Mobility and chemical fate of arsenic and antimony in water and sediments of Sarouq River catchment, Takab geothermal field, northwest Iran. Journal of Environmental Management, 170, 136-144.
Siegel, F.R., 2002. Environmental geochemistry of potentially toxic metals. Springer, Berlin, 218.
Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., 2015. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 112, 247–270.
Smedley, P.L., and Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Apply of Geochemistry, 17, 517-568.
Solgi, E., and Mahmoudi, S., 2022. Arsenic and heavy metal concentrations in human hair from urban areas. Environmental Health Engineering and Management Journal, 9(3), 247-253.
Speer, R.M., Zhou, X., Volk, L.B., Liu, K.J., Hudson, L.G., 2023. Arsenic and cancer: Evidence and mechanisms. Advances in Pharmacology.
WHO, 2013. Progress on sanitation and drinking-water: Fast facts. http://www.who.int/water_sanitation_health/en/index.html.